Calculus II	Name:
Study Guide 32	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. Use the power series $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, |x| < 1 to express the following functions as power series and give the interval of convergence.

(a) (3 points)
$$f(x) = \frac{2}{1 - 4x^2}$$
.

(b) (4 points)
$$f(x) = \frac{x}{10+x}$$
.

(b) _____

2. (5 points) Use partial fractions to express $f(x) = \frac{x+2}{2x^2-x-1}$ as the sum of power series. Give the interval of convergence.

2

- 3. Consider $f(x) = \frac{1}{1-x}$.
 - (a) (3 points) Find f'(x).

(a) _____

(b) (5 points) Express f'(x) as a power series. Determine the radius of convergence.

(b) _____

4. Consider $f(x) = \frac{1}{1+x^2}$.

(a) (3 points) Find $\int f(x) dx$.

- (a) _____
- (b) (5 points) Express $\int f(x) dx$ as a power series. Determine the radius of convergence.

(b) _____

5. (6 points) Express $\int \frac{\tan^{-1} x}{x} dx$ as a power series. Give the interval of convergence.

õ. _____

6. Find a power series representation for the following functions and determine the radius of convergence.

(a) (5 points)
$$f(x) = \ln(4 - x)$$
.

(b) (5 points)
$$f(x) = \tan^{-1} x^2$$
.

(c) (6 points)
$$f(x) = \left(\frac{x}{1-x}\right)^3$$
.

(c) _____